PROGRAMACION VECTORIAL

RAFAEL VALDÉS VALDAZO UO196581 ÁNGEL MARÍA VILABOA PÉREZ UO197092 BLOQUE PARALELAS 4° INFORMÁTICA UNIVERSIDAD DE OVIEDO

INTRODUCCIÓN

- Ligada al concepto de vector
 - Decodifica instrucciones cuyos operandos sean vectores.
 - Realiza operaciones aritmético-lógicas sobre las componentes de dichos vectores.
- Nuevo juego de instrucciones
- Ejemplos:
 - Nemotécnico VADD-> suma de vectores.
 - Nemotécnico VSUM->suma de componentes

CARACTERÍSTICAS DEL LENGUAJE

- Deben poseer un alto grado de flexibilidad para declarar diferentes clases de objetos con distintas estructuras y formas de almacenamiento.
- El lenguaje debe ser eficaz para la manipulación de matrices y vectores dispersos.
- Deben disponer de operaciones vectoriales nativas que trabajen directamente sobre las estructuras de datos comentadas anteriormente sin necesidad de bucles.

VENTAJAS

- Elimina conflictos debido a dependencias de datos.
- Nos reduce el efecto del cuello de botella.
- Acceso a memoria en las instrucciones vectoriales mediante un patrón fijo lo que facilita su lectura.
- Se reducen los riesgos de control que podrían surgir en los saltos de bucle.

CONVERSIÓN DE CÓDIGO ESCALAR EN CÓDIGO VECTORIAL

- o Dos formas de generar código vectorial:
 - Programación manual o paralelismo explícito.
 - Vectorización automática o paralelismo implícito.

PARALELISMO IMPLÍCITO

• Ventajas:

- El programador no se centra en la división de tareas.
- Facilita el diseño de programas paralelos.
- En especial, aplicaciones que realizan operaciones intensivas en matrices

• Inconvenientes:

- reduce el control que el programador tiene sobre la ejecución paralela.
- dificultades en la vectorización del código debidas a las instrucciones de control, dependencia de datos y las indexiones indirectas.

PARALELISMO EXPLÍCITO

• Ventajas:

- Aumenta el control del programador.
- Se obtienen programas más óptimos.

• Inconvenientes:

- Actualmente, existen pocos lenguajes vectoriales.
- No existe una normalización aceptada para estos lenguajes.
- Depuración dificultosa.

EJEMPLO PRÁCTICO: PROGRAMACIÓN MANUAL VS VECTORIZACIÓN AUTOMÁTICA

	400 × 400			500 × 500			600 × 600		
CPUs	SISAL	SR	C	SISAL	SR	C	SISAL	SR	С
1	34.5	60.5	28.2	66.9	118.	56.2	115.0	215.	95.6
2	17.7	30.7	14.6	34.5	60.0	29.3	59.6	114.	52.9
3	12.3	20.8	10.2	23.7	40.8	21.2	40.9	77.8	38.0
4	9.12	16.0	8.73	19.2	31.1	16.7	31.9	60.4	29.7

	SIS	SAL		SR	
CPUs	osc	fsc	bag	prune	C
1	26.7	23.7	25.8	18.2	7.79
2		12.1	15.3	9.10	3.87
3		8.17	13.3	6.07	2.61
4		6.65	22.5	5.64	2.18

COMPARATIVA ARQUITECTURA ESCALAR Y VECTORIAL

o Usaremos el programa que resuelve:

Y=aX+Y

- Para la arquitectura escalar usaremos el simulador DLX (14 instrucciones).
- Para la arquitectura vectorial usaremos el simulador DLXV (6 instrucciones).
- En un computador vectorial podemos distinguir dos tiempos en la ejecución de instrucciones:
 - Tiempo de arranque.
 - Velocidad de inicialización.

COMPARATIVA ARQUITECTURA ESCALAR Y VECTORIAL (II)

RESULTADOS

- Escalar
 - Ciclos 104
 - 10 saltos condicionales (10,17%)
 - N° de detenciones 44 (42,31)
- Vectorial
 - Ciclos: 31
 - Instrucciones: 21
 - CPI:1,476

COMPARATIVA ARQUITECTURA ESCALAR Y VECTORIAL (CONCLUSIONES)

- El rendimiento de DLXV (vectorial) es muy superior (31 ciclos frente a 104).
- En DLX ocurren 44 detenciones.
 - Cada ADD debe esperar por un MULTD
 - Cada SD debe esperar por un ADDD.
- En DLXV no ocurre ninguna.
 - Cada instrucción vectorial opera sobre todos los elementos del vector independientemente.
- DLX necesita 6 operaciones de salto las cuales no afectan a la productividad.

BIBLIOGRAFÍA

• http://www.infor.uva.es/~bastida/Arquitecturas%20Avanzadas/Vectoriales.pdf

-Introducción general, definiciones básicas, características, tiempo

de arranque...

-http://atc2.aut.uah.es/~acebron/cap3vect.pdf

-Nociones generales, juego de instrucciones, arquitectura DLXV

-http://www.angelfire.com/ca6/angie/vectoriales.htm

-Información muy general

-Artículo "A Comparison of Implicit and Explicit Parallel

Programming" de Vincent W. Freeh (Universidad de Arizona).

-Ejemplos de comparación de programación paralela explicita e implicita.

-Práctica 4 "Procesadores Vectoriales" Universidad de Alcalá.

-Familiarización con arquitectura DLXV

-Tema 4 Computadores Vectoriales DIESA. Arquitectura y Tecnología de computadores.

-Multi-core Programming: Implicit Parallelism. Transparencias de

Tuukka Haapasalo

-Paralelismo explícito e implicito; definiciones, ventajas y desventajas...

